Problema 77:
- (a) Calcula el número de soluciones enteras no negativas de
$$ x_1+x_2+x_3+x_4+x_5+x_6=10. $$
- (b) ¿Cuántas soluciones enteras no negativas posee la inecuación
$$ x_1+x_2+x_3+x_4+x_5+x_6 < 10 ? $$
Para el apartado (a), razonaremos, como viene siendo ya habitual, en términos de urnas indistinguibles y bolas idénticas. Consideraremos que tenemos en nuestro haber seis de dichas urnas, en las que deseamos colocar diez de las mencionadas bolas. Aplicando la técnica de barras y estrellas necesitamos cinco barras para representar sobre la recta real las seis urnas y buscamos ubicar luego diez estrellas en los huecos que dicha configuración produce. Por consiguiente, el número de formas en que el valor de la suma de seis variables puede ascender a diez, equivale a la cantidad de permutaciones con repetición de $15$ elementos, donde uno de ellos se repite cinco veces, mientras que el otro lo hace en diez ocasiones. Así, hay
$$ PR_{15}^{5,10} = CR_{6,10} = \dbinom{15}{10} = \dfrac{15\cdot14\cdot13\cdot12\cdot11}{5!} = 3003 $$
soluciones enteras no negativas para la ecuación propuesta.
En cuanto al apartado (b), nos encontramos en una situación parecida a la del ejercicio anterior aunque observamos una desigualdad estricta. En primer lugar, cambiaremos adecuadamente el signo $<$ por $\leq$ y luego procederemos como en aquel problema. Así, como estamos interesados en soluciones enteras no negativas, es cierto que
$$ x_1+x_2+x_3+x_4+x_5+x_6 < 10 \Leftrightarrow x_1+x_2+x_3+x_4+x_5+x_6\leq 9. $$
A continuación, introducimos una urna adicional, en la forma de una nueva variable, $x_7$, para así transformar la inecuación en una ecuación. Por tanto, el problema se reduce a averiguar el número de soluciones enteras no negativas de la ecuación
$$ x_1+x_2+x_3+x_4+x_5+x_6+x_7=9. $$
Aplicando la técnica de barras y estrellas necesitamos seis barras para representar sobre la recta real las siete urnas y buscamos ubicar luego nueve estrellas en los huecos que dicha configuración produce. Por consiguiente, el número de formas en que el valor de la suma de siete variables puede ascender a nueve, equivale a la cantidad de permutaciones con repetición de $15$ elementos, donde uno de ellos se repite seis veces, mientras que el otro lo hace en nueve ocasiones. Así, hay
$$ PR_{15}^{6,9} = CR_{7,9} = \dbinom{15}{9} = \dfrac{15\cdot14\cdot13\cdot12\cdot11\cdot10}{6!} = 5005 $$
soluciones enteras no negativas para la ecuación propuesta y, por tanto, asimismo para la inecuación planteada en el segundo apartado del ejercicio.